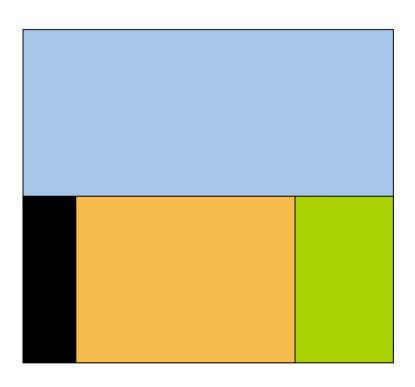
Efficienza energetica Motori e inverter: opportunità e criticità

Giornata sull'Effiicenza Energetica

La situazione energetica nazionale

Il sistema Paese

- Significativa e critica dipendenza energetica dall'estero
 86% energie primarie (petrolio, gas, carbone)
 17% energia elettrica, soprattutto da Francia e Svizzera
- Concordata con gli altri membri UE la riduzione del 20% delle emissioni di CO₂ entro il 2020


I consumi elettrici dei motori nell'industria italiana

Totale energia elettrica utilizzata in Italia

Energia elettrica sciupata con tecnologie obsolete e altamente dissipative

20%

7,5% del totale!!!

Energia elettrica utilizzata <u>per i motori nell'industria</u>

75%

Energia elettrica nell'industria italiana

50%

Motori ad alto rendimento e motori EFF1

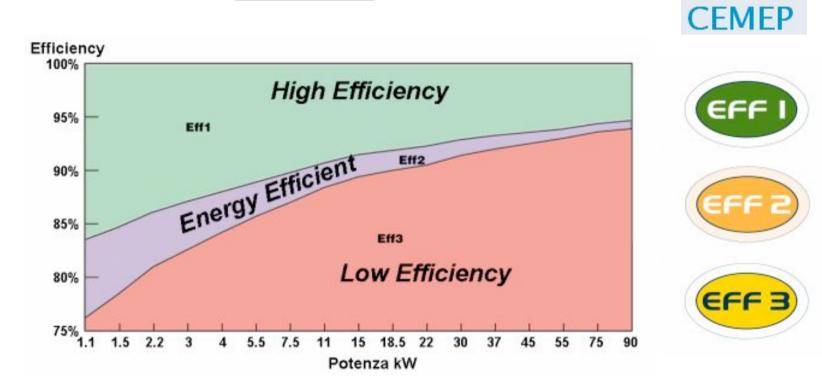
Motori ad alto rendimento

- Rendimenti superiori a quelli comunemente diffusi
- Non c'è limite di taglie, tipologie o configurazioni

Motori EFF1

- La parte di motori ad alto rendimento che rispondono ai requisiti del CEMEP
- Esistono motori ad alto rendimento che non hanno la targhetta EFF1
- Esiston motori che, pur presentando la targa EFF1, in realtà non lo sono

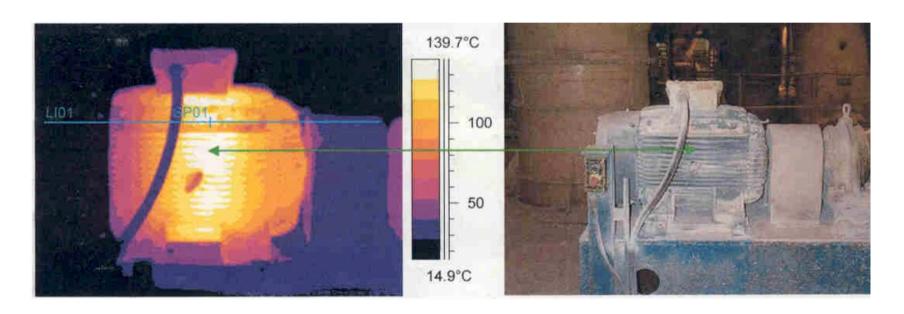
Campo di applicazione dell'accordo CEMEP


Accordo CEMEP

- È un accordo volontario, come tale richiede impegno e correttezza da parte dei costruttori
- Riguarda solo motori a 400 V, 50 Hz, 2 o 4 poli, da 1,1 a 90 kW
- Definisce livelli di efficienza, il maggiore è EFF1
- Solo i produttori aderenti al CEMEP hanno diritto ad utilizzare il marchio EFF1 e solo per motori entro le categorie specificate
- Esistono motori di altre taglie, tensioni e numero di poli con efficienze superiori allo standard di mercato.
 Questi non possono essere marcati EFF1 ma possono essere indicati come "ad alto rendimento"

L'efficienza dei motori

Linee guida Cemep accordo volontario tra i costruttori



Motori

Meno energia dispersa sotto forma di calore

Un motore con basso rendimento scalda di più perché parte della sua energia è dispersa sotto forma di calore anziché essere utilizzata per il movimento meccanico

Motori

Differenze in un motore EFF 1

Oltre ad un migliore design, la differenza principale di un motore ad alto rendimento risiede nell'utilizzo di più materiale e nella sua migliore qualità

Perdite nel ferro (18%)

 Migliore qualità acciaio
 lamine più sottili, pacchi più lunghi, minore traferro

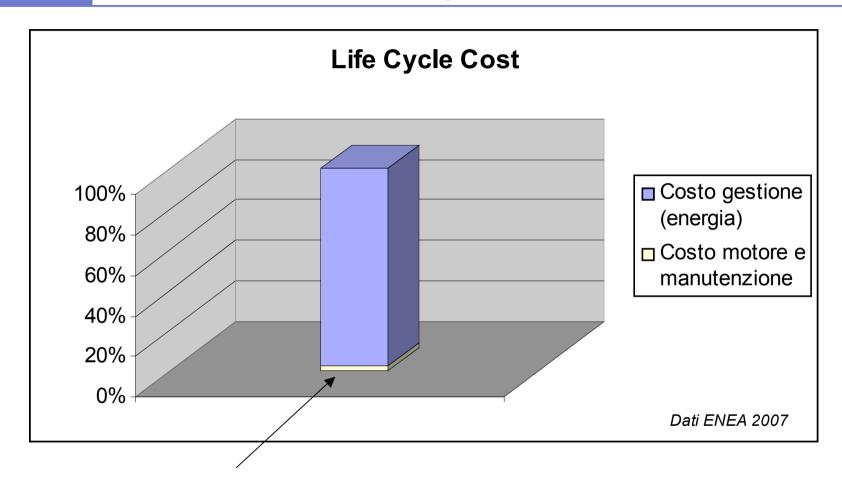
Perdite nel rotore (24%)

-maggiore sezione barre di conduzione e degli anelli di cortocircuito

Perdite nel rame dello statore (34%)

- Ottimizzazione forma delle cave statoriche
- aumentando il volume del rame nello statore

Perdite per ventilazione e frizione (10%)


- -Ventole più piccole
- -Migliori cuscinetti
- -Rotore bilanciato dinamic.

Perdite addizionali a pieno carico (14%)

-Ottimizzazione geometria delle cave

I costi - non un valido pretesto

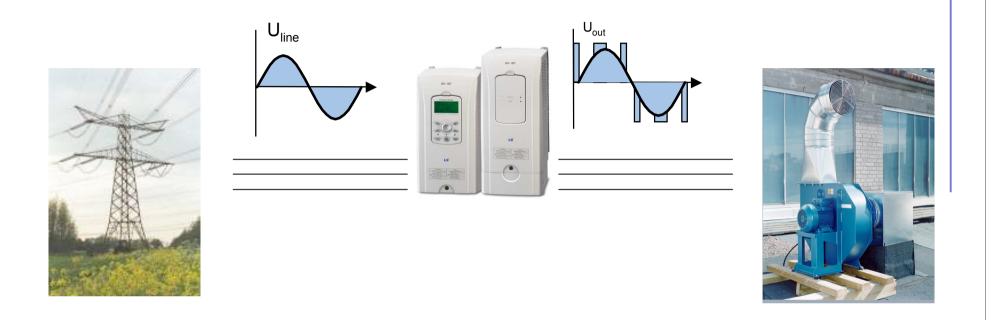
Il costo di acquisto del motore è solo il 1,3% del costo totale della sua vita!

Costi di manutenzione 0,3%

Costi energetici 98,4%

Motori

Risparmi, investimenti e tempi di payback

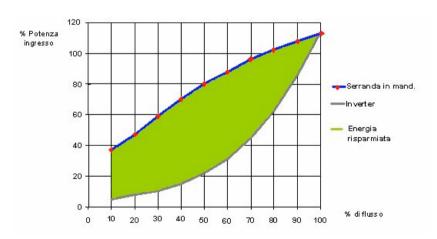

- Risparmi con i motori ad alto rendimento
 Fino al 10%

- Investimenti
 - Limitati
 - Interventi frazionabili nel tempo
- Tempi di rientro degli investimenti
 Dai 12 ai 36 mesi, in base a
 - Potenza
 - Ore di funzionamento
 - Condizioni vecchio motore
- Altri benefici
 - Rinnovo impianto
 - Motori EFF1 più robusti

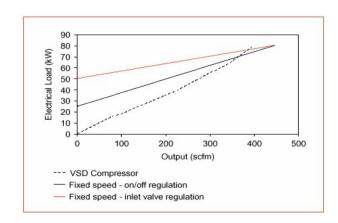
Inverter

Cos'è un inverter

L'inverter varia frequenza e tensione di alimentazione di un motore elettrico, adeguandone la velocità alle effettive esigenze del dispositivo a cui è collegato



Efficienza energetica con inverter


 L' inverter adatta in tempo reale le performance del motore alle necessità dell'applicazione

erogando solo la reale potenza richiesta

- Il risparmio ottenibile dipende dal tipo di applicazione in esame...
- ...e dalla tipologia di controllo con cui ci si confronta

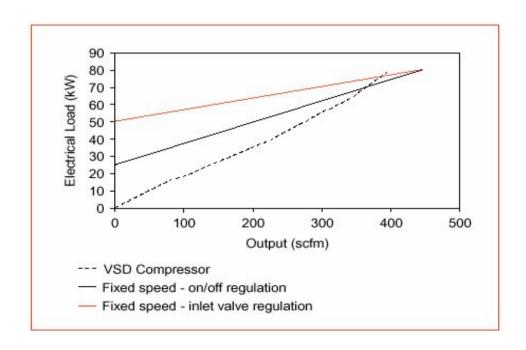
Performance con Ventilatori

Performance con compressori

Inverter

Risparmio in pompe e ventilatori

- Nelle applicazioni con pompe e ventilatori, l'inverter consente la migliore efficienza energetica per i sistemi a portata variabile
- Il risparmio effettivo può variare dal 20% al 50% e oltre, il 35% in media rispetto a sistemi on -off, valvole o serrande, by pass
- Alcuni impianti funzionano a pieno regime (senza regolazione) anche quando è sovradimensionato
- Nei compressori o altre applicazioni (es. nastri trasportatori, mixer, estrusori) l'inverter consente risparmi effettivi dal 10% al 30% e oltre, per i compressori il 15% in media


In Italia**

- Le pompe e i ventilatori sotto i 90 kW sono oltre 2 milioni di cui oggi solo l'8% regolati da inverter
- Gli inverter sono tecnicamente ed economicamente applicabili ad almeno un ulteriore 52%

^{**} Studi Save "VSDs for Electric Motor system" e "Improving the penetration of EEM and Drives"

Non solo compressori

- L'utilizzo dell' inverter consente risparmi considerevoli anche in applicazioni diverse, ad esempio nastri trasportatori, mixer, estrusori e compressori
- Il risparmio effettivo può variare da un 10% a un 30% e oltre, per i compressori il 15% in media

Inverter

Risparmi, investimenti e tempi di payback

- Risparmi con gli inverterFino al 60% e oltre
- Investimenti
 - Limitati
 - Interventi frazionabili nel tempo
- Tempi di rientro degli investimenti
 Dai 6 ai 18 mesi, in base a
 - Potenza
 - Ore di funzionamento
 - Applicazione (pompe e ventilatori con il massimo risparmio)
- Altri benefici
 - Riduzione costi manutenzione impianto
 - Migliore regolazione e vita dell'impianto

Qualcosa si è mosso

Le industrie e il terziario

- Lentamente si avviano gli interventi di efficienza
- Ancora poca chiarezza su incentivi finanziaria e meccanismo certificati bianchi

nel dettaglio

- Grosse industrie: molto interessate sia per il beneficio economico sia per il ritorno di immagine
- Piccole e medie industrie: sempre più interessate, necessitano di supporto per quantificare il risparmio nel proprio stabilimento
- Terziario e residenziale: si stanno attrezzando, priorità a cogenerazione, fotovoltaico, o interventi sugli edifici

Un'esperienza da cui prendere spunto

Un'azienda chiedeva supporto per efficienza nei loro impianti

"Siamo già attivi da anni per rendere efficienti i nostri impianti, abbiamo già installato inverter su tutti i ventilatori che avevano serrande e i **nuovi** motori sono EFF1 in specifica. Cos'altro possiamo fare?"

Alla fine ecco i compiti a casa

- Analizzare vantaggi e ritorni per
 - Sostituzione tutto il parco installato motori BT (del 1970!) con EFF1
 - Installazione inverter su pompe
 - Installazione inverter su compressori
 - Installazione inverter su ventilatori velocità fissa (riduzione velocità all'80%)
 - Installazione inverter su motori in MT
 - Sostituzione trasformatori MT BT vecchi e di bassa efficienza

Sostituzione vecchi motori ancora funzionanti

- 16 motori di varie potenze (tra 1,5 a 75 kW), funzionanti dalle 2000 alle 2800 ore all'anno - costo energia: 0,13 €/kWh
- Sostituzione con nuovi motori ad alto rendimento (EFF1)

Riepilogo	
Consumo vecchia soluzione	725 [MWh/anno]
Consumo con motore EFF1	670 [MWh/anno]
Risparmio energetico	55 [MWh/anno]
Costi energetici vecchia soluzione	94.250 [€/anno]
Costi energetici con motori EFF1	87.100 [€/anno]
Risparmio annuo	7.150 [€/anno]
Costo investimento motori EFF1	14.000 [€]
NPV a 5 anni	16.200 [€]
Tempo di payback	1,9 [anni]

Riduzione emissioni CO₂: 27,5 ton/anno

La configurazione iniziale

- Un ventilatore da 30 kW aspira i trucioli da 4 diverse postazioni di lavoro
- Il ventilatore funziona a velocità fissa, al 100% della potenza nominale, anche con una necessità parziale di portata dell'aria
- Quando una o più postazioni sono inattive, le bocchette corrispondenti vengono chiuse e il flusso d'aria delle postazioni rimaste attive viene parzializzato

Il flusso delle diverse postazioni è regolato dalle serrande sulle bocche d'aspirazione

La soluzione

- Utilizzo di inverter per regolare la velocità del ventilatore e ridurre la portata
- Quando una o più postazioni sono inattive, la bocchetta corrispondente viene chiusa e il ventilatore è rallentato per la minore richiesta di aria
- Sostituzione anche del motore con uno nuovo ad alto rendimento (EFF1)

In caso di richiesta parziale della portata, il ventilatore rallenta e si chiudono solo le bocchette delle postazioni inattive

Bilancio energetico ed economico

Funzionamento annuo: 3.000 ore

Costo energia: 0,18 €/kWh

Riepilogo	
Consumo vecchia soluzione	200 [MWh/anno]
Consumo con inverter e motore EFF1	145 [MWh/anno]
Risparmio energetico	55 [MWh/anno]
Costi energetici vecchia soluzione	36.600 [€/anno]
Costi energetici con inverter e motore EFF1	26.100 [€/anno]
Risparmio annuo	10.500 [€/anno]
Costo investimento (inverter + installazione)	6.000 [€]
NPV a 5 anni	39.000 [€]
Tempo di payback	< 0,6 [anni]

Riduzione emissioni CO₂: 27,5 ton/anno

Analisi e intervento

- Analisi di 29 ventilatori con motori da 0.75 a 11 kW
- Funzionamento continuo (8760 h/anno)
- Sistemi di ventilazione per
 - Reparti (blocco operatorio, radiologia, rianimazione...)
 - Laboratori (nucleare, analisi batteriologica, automazione a isole...)
 - Ambulatori (oculistica, dialisi...)
 - Pronto soccorso
 - Sala convegni, cucina, farmacia, atrio, cappella...
 - ..

<u>Intervento</u>

Applicazione di inverter per regolazione sistemi di ventilazione

Bilancio energetico ed economico

Riepilogo intervento	
Consumo vecchia soluzione	1.160 [MWh/anno]
Consumo con inverter	715 [MWh/anno]
Risparmio energetico	445 [MWh/anno]
Costi energetici vecchia soluzione	139.200 [€/anno]
Costi energetici con inverter	85.800 [€/anno]
Risparmio annuo	53.400 [€/anno]
Costo investimento	53.000 [€]
NPV a 5 anni	178.000 [€]
Tempo di payback	< 1 anno
Riduzione emissioni CO2	220 ton/anno

In pratica dove iniziare a cercare il risparmio

- Tutti i motori di bassa tensione, priorità a
 - motori funzionanti molte ore all'anno
 - motori già riavvolti
- Pompe e ventilatori, priorità a
 - applicazioni con flusso parzializzato (valvole, serrande, on-off)
 - applicazioni con funzionamento fisso ma sistema sovradimensionato
- Compressori, priorità a
 - compressori a vite, no revamping di vecchi compressori frigo
- Motori di media tensione dove è possibile aggiungere un inverter

Motori

I maggiori risparmi non sono necessariamente ottenuti dai motori più grossi

I vecchi motori di grosse dimensioni possono avere dei buoni rendimenti, a meno che non siano stati riavvolti, una o più volte

I motori ad alto rendimento costano più degli altri

Una volta deciso di sostituire i motori vecchi con quelli ad alto rendimento, non è sempre la scelta migliore selezionare il nuovo motore solo in base al prezzo: rischiamo di trovarci delle sorprese non gradite

Sostituzione di un motore guasto

Quando si rompe un motore, conviene comunque sostituirlo con uno ad alto rendimento, l'investimento è molto ridotto (differenza EFF1 / EFF2)

Riavvolgimento, quando non conviene

Ogni riavvolgimento riduce di almeno un punto percentuale l'efficienza del vecchio motore. Se il vecchio motore che si guasta ha più di 5 anni conviene sostituirlo con uno ad alto rendimento

Disturbi EMC e armoniche

Gli inverter introducono disturbi che opportuni filtri EMC e reattanze eliminano o riducono, mantenendo i tempi di rientro dell'investimento dello stesso ordine di grandezza

Integrazione impiantistica

Aggiungere gli inverter significa anche ottimizzare il funzionamento degli impianti. Sono quindi un beneficio anche per i manutentori e non sono più visti come un possibile elemento di disturbo

Applicazioni a velocità fissa

Molte delle applicazioni a velocità fissa sono sovradimensionate. Ridurre la velocità anche solo al 90% della nominale (motore a 45 Hz anziché 50 Hz) consente risparmi con investimenti che si ripagano in un anno

Compressori

Si sconsiglia il revamping di vecchi compressori frigo. L'inverter consente risparmi ma il compressore frigo deve prevederlo in fase di progetto

Aspetti da evidenziare

In generale

Interventi

Con un'adeguata programmazione degli interventi, i risparmi si vedono da subito e consentono ulteriori investimenti anche in altre direzioni

Risorse da impiegare

L'efficienza energetica con motori e inverter è estremamente semplice e può essere considerata parte delle normali attività di manutenzione, non richiede risorse aggiuntive di personale. È anche possibile farsi supportare da operatori o aziende con esperienza

Fermo impianto programmato

Gli interventi possono essere realizzati durante i fermi impianto programmati. È opportuno organizzarsi in tempo con i fornitori per garantire la realizzazione delle modifiche entro i tempi previsiti

